Feasible Interior Methods Using Slacks for Nonlinear Optimization

نویسندگان

  • Richard H. Byrd
  • Jorge Nocedal
  • Richard A. Waltz
چکیده

A slack-based feasible interior point method is described which can be derived as a modification of infeasible methods. The modification is minor for most line search methods, but trust region methods require special attention. It is shown how the Cauchy point, which is often computed in trust region methods, must be modified so that the feasible method is effective for problems containing both equality and inequality constraints. The relationship between slack-based methods and traditional feasible methods is discussed. Numerical results using the KNITRO package show the relative performance of feasible versus infeasible interior point methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A full Nesterov-Todd step interior-point method for circular cone optimization

In this paper, we present a full Newton step feasible interior-pointmethod for circular cone optimization by using Euclidean Jordanalgebra. The search direction is based on the Nesterov-Todd scalingscheme, and only full-Newton step is used at each iteration.Furthermore, we derive the iteration bound that coincides with thecurrently best known iteration bound for small-update methods.

متن کامل

A starting point strategy for nonlinear interior methods

This paper presents a strategy for choosing the initial point slacks and multipliers in interior methods for nonlinear programming It consists of rst computing a Newton like step to estimate the magnitude of these three variables and then shifting the slacks and multipliers so that they are su ciently positive The new strategy has the option of respecting the initial estimate of the solution gi...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM

This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...

متن کامل

Interior-Point Gradient Methods with Diagonal-Scalings for Simple-Bound Constrained Optimization

In this paper, we study diagonally scaled gradient methods for simple-bound constrained optimization in a framework almost identical to that for unconstrained optimization, except that iterates are kept within the interior of the feasible region. We establish a satisfactory global convergence theory for such interior-point gradient methods applied to Lipschitz continuously differentiable functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2003